Consistency of Random Forests and Other Averaging Classifiers

نویسندگان

  • Gérard Biau
  • Luc Devroye
  • Gábor Lugosi
چکیده

In the last years of his life, Leo Breiman promoted random forests for use in classification. He suggested using averaging as a means of obtaining good discrimination rules. The base classifiers used for averaging are simple and randomized, often based on random samples from the data. He left a few questions unanswered regarding the consistency of such rules. In this paper, we give a number of theorems that establish the universal consistency of averaging rules. We also show that some popular classifiers, including one suggested by Breiman, are not universally consistent.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparsity and Inverse Problems in Statistical Theory and Econometrics

In the last years of his life, Leo Breiman promoted random forests for use in classification. He suggested using averaging as a means of obtaining good discrimination rules. The base classifiers used for averaging are simple and randomized, often based on random samples from the data. He left a few questions unanswered regarding the consistency of such rules. In this talk, we give a number of t...

متن کامل

Consistency of Random Forests

Random forests are a learning algorithm proposed by Breiman (2001) which combines several randomized decision trees and aggregates their predictions by averaging. Despite its wide usage and outstanding practical performance, little is known about the mathematical properties of the procedure. This disparity between theory and practice originates in the difficulty to simultaneously analyze both t...

متن کامل

Explaining the Success of AdaBoost and Random Forests as Interpolating Classifiers

There is a large literature explaining why AdaBoost is a successful classifier. The literature on AdaBoost focuses on classifier margins and boosting's interpretation as the optimization of an exponential likelihood function. These existing explanations, however, have been pointed out to be incomplete. A random forest is another popular ensemble method for which there is substantially less expl...

متن کامل

Banzhaf Random Forests

Random forests are a type of ensemble method which makes predictions by combining the results of several independent trees. However, the theory of random forests has long been outpaced by their application. In this paper, we propose a novel random forests algorithm based on cooperative game theory. Banzhaf power index is employed to evaluate the power of each feature by traversing possible feat...

متن کامل

Comparison of Machine Learning Algorithms for Broad Leaf Species Classification Using UAV-RGB Images

Abstract: Knowing the tree species combination of forests provides valuable information for studying the forest’s economic value, fire risk assessment, biodiversity monitoring, and wildlife habitat improvement. Fieldwork is often time-consuming and labor-required, free satellite data are available in coarse resolution and the use of manned aircraft is relatively costly. Recently, unmanned aeria...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2008